

The Need for Standardized Benchmarking of SOCs

10.10.2023 | CHRISTIAN LENSER AND NORBERT H. MENZLER
INSTITUTE OF ENERGY AND CLIMATE RESEARCH – MATERIALS SYNTHESIS AND PROCESSING (IEK-1)
FORSCHUNGSZENTRUM JÜLICH, GERMANY

Overview

Benchmarking Solid Oxide Cells (SOCs) – status quo in literature

Problems with the status quo

Can we have better metrics?

SOC research at Forschungszentrum Jülich

- SOC research for > 25 years
- From raw materials to stacks and systems
- Cell, interconnect, sealing, BoP, design & engineering

Q. Fang, L. Blum, D. Stolten, ECS Transactions, 91 (2019) 687-696.

10/40 kW rSOC system

 Highlights include degradation testing of SOFC / SOEC, rSOC system design and testing, and much more...

SOC - R&D status and industrialization

- SOC technology is on the cusp of large-scale commercialization (MW to GW)
 - Fuel cell: Bosch (DE), Weichai (CN), Bloom Energy (USA), Elcogen (ES), SolydEra (IT), Convion (FI)...
 - Electrolysers: Bloom Energy (USA), Haldor Topsoe (DN), Sunfire (DE),...
- As the SOCs move toward a focus on production, there is a need for industry and key players to identify promising new technology and materials
- Cell testing is the gold standard to assess materials and cell design, but there some problems with how cell testing is reported

Motivation

Performance Benchmark of Planar Solid Oxide Cells Based on Material Development and Designs

Page 5

David Udomsilp,* Christian Lenser, Olivier Guillon,* and Norbert H. Menzler*

Review article about the state-of-the-art in SOC

600 °C		700 °C	
<i>j</i> _{0.7 ∨} [A cm ⁻²]	$R_{\rm p}$ $[\Omega{ m cm}^2]$	<i>j</i> _{0.7 ∨} [A cm ⁻²]	$R_{\rm p}$ $[\Omega{ m cm}^2]$

- Searched for current density (A cm⁻²) at 0.7 V
- Quick reference for cell / materials performance
- Major obstacle: the way that cell performance is reported

[1] D. Udomsilp, C. Lenser, O. Guillon, N.H. Menzler, Energy Technology, 9 (2021) 2001062.

Benchmarking SOFC – the status quo

- Searching Web of Science (results in last 5 years, "solid oxide fuel cell", "electrode")
- > Papers focusing on materials development use the peak power density (PPD) as metric

Application of CuNi–CeO₂ fuel

electrode in oxygen electrode

ode: 3D Core-Shell-Structured $_{3}O_{3-\delta}$ @Pr $O_{2-\delta}$ Nanofibers Prepared by Coaxial

Boosting and Robust Multifunction Supported reversible solid oxide cell **Fuel Cells** International Journal of Hydrogen CACS

Ultrafine, Dual-Phase, Cation-Deficient PrBa_{0.8}Ca_{0.2}Co₂O_{5+ δ} Air s for Reversible Electrode for Efficient Solid Oxide Cells Enabled by an

nanocomposite electrodes

Journal

ACS APPLIED MATERIALS

 $\begin{array}{l} \text{High-Performance SmBaMn}_2O_{\text{S+}\delta} \text{ Electr} \\ \text{High Cu content } LaNi_{1-x}Cu_xO_{3-\delta} \end{array}$

perovskites as candidate air electrode lectrode for id oxide materials for Reversible Solid Oxide

Cells

a Acta

Review of SOFC Cathode Performance Enhancement by Su International Journal of Hydrogen Modifications: Recent Advances and Future Directions

ovskite Compounds as Cathode Materials

Sr-free orthorhombic perovskite

 $Pr_{0.8}Ca_{0.2}Fe_{0.8}Co_{0.2}O_{3-\delta}$ as a high-

Journal of Power Sources

performance air electrode for

reversible solid oxide cell

nor Low-Temperature Song Oxide Fuel Cells**

YVANCED

energy@fuels

Oxide Fuel Cell

Availability of data

Information supplied in main paper

Reference	Area	Gas composition/ flow rates	Contacting materials	Current sweep rate
Α				
В				
С				
D				
Е				
F				

[[]A] Z. Yue, L. Jiang, Z. Chen, N. Ai, Y. Zou, S.P. Jiang, C. Guan, X. Wang, Y. Shao, H. Fang, Y. Luo, K. Chen, ACS Applied Materials & Interfaces, 15 (2023) 8138-8148.

[[]B] J. Bai, D. Zhou, X. Zhu, N. Wang, R. Chen, B. Wang, ACS Applied Energy Materials, 5 (2022) 11178-11190.

[[]C] Z. Zheng, J. Jing, H. Yu, Z. Yang, C. Jin, F. Chen, S. Peng, ACS Sustainable Chemistry & Engineering, 10 (2022) 6817-6825.

[[]D] S. Yoo, A. Jun, Y.-W. Ju, D. Odkhuu, J. Hyodo, Y. Jeong Hu, N. Park, J. Shin, T. Ishihara, G. Kim, Angewandte Chemie International Edition, 53 (2014) 13064-13067.

[[]E] J. Zamudio-García, L. dos Santos-Gómez, J.M. Porras-Vázquez, E.R. Losilla, D. Marrero-López, Journal of the European Ceramic Society, 43 (2023) 1548-1558.

[[]F] Y. Niu, Y. Zhou, W. Zhang, Y. Zhang, C. Evans, Z. Luo, N. Kane, Y. Ding, Y. Chen, X. Guo, W. Lv, M. Liu, Adv. Energy Mater., 12 (2022) 2103783.

What is the peak power density (PPD)?

Z. Zheng, J. Jing, H. Yu, Z. Yang, C. Jin, F. Chen, S. Peng, ACS Sustainable Chemistry & Engineering, 10 (2022) 6817-6825.

- PPD is the maximum of the power density vs current density curve
- PPD provides one value that describes cell performance at a given temperature
-or does it?

PPD – the problems

Reference	Temperature (°C)	Voltage (V)	Current density (A cm ⁻²)	Power density (W cm ⁻²)
Α	700	0.47	1.3	0.61
В	700	0.5	2.3	1.15
С	700	0.55	0.4	0.22

- > PPD is never at the same working point for different cells
- > PPD is always at rather low voltages
 - > Consequences for efficiency
 - ➤ Unstable operation

PPD – voltage efficiency

- Fuel cells operating below the thermoneutral voltage $V_{TN} = \frac{-\Delta H}{nF}$ generate heat
- As V_{TN} ~ 1.3 V at 800 °C, SOFCs always produce heat
- The further V_{cell} is below V_{TN}, the more heat (and less electricity) is produced
- Definition: $Voltage\ efficiency = \frac{Operating\ voltage\ (V)}{Thermodynamic\ voltage\ (E)}$

PPD – low voltage

- ➤ Ellingham diagram: equilibrium pO₂ for Ni oxidation is ~ 10⁻¹⁴ atm at 800°C
- > With $E = -\frac{RT}{4F} \ln \left(\frac{pO_2}{0.21} \right)$; this pO₂ corresponds to a cell voltage of 700 mV at 800 °C
- From this simple analysis, it should be clear the PPD at ~ 500 mV does <u>not</u> reflect a <u>stable</u> operation point of the SOFC

PPD – find the maximum?

- Measuring single cells with 16 cm² electrode area results in currents of 32 A @ 2 A/cm²
- > No maximum in power density
- ➤ The maximum current depends on the experimental setup, not the cell!
- What if you reduce the active area?

Cell: LSC | 0.5 μ m GDC | 2 μ m YSZ | Ni-YSZ A = 16 cm²; 20% H₂O / H_{2:} air

Effect of electrode area

Confidential data from Forschungszentrum Jülich, V. Haanappel

- ➤ Electrode-supported cells (Ni-YSZ|YSZ|LSM) contacted with Ni and Pt meshes
- ➤ Electrode area varied between 1 cm² and 16 cm²
- Substantial increase in current density (@ 700 mV) with decreasing electrode size
- Difference in power density is likely due to differences in fuel utilization (gas flow rate was constant for all cells)

Effect of current sweep rate

Cell: LSC | 0.5 µm GDC | 2 µm YSZ | Ni-YSZ $A = 16 \text{ cm}^2$; 20% H_2O / H_2 : air; 650 °C

Sweep rate (mA/s)	Current density at 0.7 V (A/cm²)
20	1.27
40	1.23
100	1.07
200	1.06

- > Current sweep rate has a profound effect on measured performance (~ 20%)
- > Probably related to local temperature increase (local temperature ≠ thermocouple temperature)

Transfer of cell performance into stacks

- > Integrating cells into stack leads to lower power due to:
 - Contact resistances
 - High fuel utilization
- "Real" operation in a stack makes high current density very difficult to realize (high gas flow rates and pressure drops, large gradients across cell)
- ➤ High current density → low system efficiency
- Difference between cell and stack performance increases with higher current density

Cell: LSC | 0.5 µm GDC | 2 µm YSZ | Ni-YSZ

Cell testing – how does industry do it?

Example: Elcogen (ES)

(https://elcogen.com/products/solid-oxide-fuel-cells/)

Elcogen Single Cell UI curve comparison

Example: Kerafol (DE)

(https://www.kerafol.com/_wpframe_custom/downloads/files/Kerafol_SOFC _Datenblaetter_KeraCell-III_EN_06-21___143516-14062021.pdf)

> The (few) published metrics from industry reflect the concerns about cell testing. Testing is kept to low current densities.

Problems with PPD - summary

- ➤ The PPD is typically found at a point that:
 - shows low cell efficiency
 - is unstable with regards to Ni oxidation
 - is not available for every experiments
 - depends on cell geometry / test bench characteristics
- Cell performance depends on
 - Gas composition & flow rate
 - Contacting materials
 - Temperature measurement & increase
 - Current sweep rate

Recommended reading:

A. Weber, tm - Technisches Messen, 89 (2022) 97-106.

V.A.C. Haanappel, M.J. Smith, A review of standardising SOFC measurement and quality assurance at FZJ, Journal of Power Sources 171 (2007) 169–178

A better metric

- Variables to define
 - Temperature
 - Current density / voltage
 - Electrode size
 - Gas flow rates or gas utilization
 - Gas composition

- Variables to eliminate
 - Sweep rate -> constant operation
 - Open circuit voltage (leakage in test setup) -> use increased humidity

Performance metrics for SOEC

- The situation is better for electrolysis
- The thermoneutral voltage $V_{TN} = \frac{-\Delta H(T)}{nF}$ is the voltage at which the cell neither produces nor consumes heat (under isothermal conditions!)
- Since $Voltage\ efficiency = \frac{V_{TN}}{V_{cell}}$, voltage efficiency is 100% at $V_{cell} = V_{TN}$
- The current density at V_{TN} is therefore a good metric for SOECs
- Other parameters (especially gas composition, also flow rates etc) must be controlled

Summary

- Peak power density (PPD) is extensively used to report cell performance
- However, there are a number of problems with PPD
- Ultimately, it is important to report all significant parameters to enable an interpretation of cell performance
- Implementing better metrics may improve reliability of literature data

THANK YOU FOR YOUR ATTENTION

CHRISTIAN LENSER

References

- [1] Y. Li, Y. Tian, J. Li, J. Pu, B. Chi, Journal of Power Sources, 528 (2022) 231202.
- [2] Y. Niu, Y. Zhou, W. Zhang, Y. Zhang, C. Evans, Z. Luo, N. Kane, Y. Ding, Y. Chen, X. Guo, W. Lv, M. Liu, Adv. Energy Mater., 12 (2022) 2103783.
- [1] T. Chen, G. Zheng, K. Liu, G. Zhang, Z. Huang, M. Liu, J. Zhou, S. Wang, International Journal of Hydrogen Energy, 48 (2023) 9565-9573.
- [2] Z. Zheng, J. Jing, H. Yu, Z. Yang, C. Jin, F. Chen, S. Peng, ACS Sustainable Chemistry & Engineering, 10 (2022) 6817-6825. (A)
- [1] P. Zhang, P. Lun, H. Wang, J. Jing, A. Wang, D. Jiang, L. Guo, W. Mi, Z. Yang, Electrochimica Acta, 442 (2023) 141872.
- [1] J. Zamudio-García, L. dos Santos-Gómez, J.M. Porras-Vázquez, E.R. Losilla, D. Marrero-López, Journal of the European Ceramic Society, 43 (2023) 1548-1558.
- [1] S. Yoo, A. Jun, Y.-W. Ju, D. Odkhuu, J. Hyodo, Y. Jeong Hu, N. Park, J. Shin, T. Ishihara, G. Kim, Angewandte Chemie International Edition, 53 (2014) 13064-13067.
- [1] S. Chen, H. Zhang, C. Yao, H. Lou, M. Chen, X. Lang, K. Cai, Energy & Fuels, 37 (2023) 3470-3487.
- [1] Z. Yue, L. Jiang, Z. Chen, N. Ai, Y. Zou, S.P. Jiang, C. Guan, X. Wang, Y. Shao, H. Fang, Y. Luo, K. Chen, ACS Applied Materials & Interfaces, 15 (2023) 8138-8148.
- [1] J. Bai, D. Zhou, X. Zhu, N. Wang, R. Chen, B. Wang, ACS Applied Energy Materials, 5 (2022) 11178-11190. (B)
- [1] A. Niemczyk, K. Zheng, K. Cichy, K. Berent, K. Küster, U. Starke, B. Poudel, B. Dabrowski, K. Świerczek, International Journal of Hydrogen Energy, 45 (2020) 29449-29464. (C)

Ref A

Ref B

Ref C

